2,925 research outputs found

    Color Confinement and Massive Gluons

    Full text link
    Color confinement is one of the central issues in QCD so that there are various interpretations of this feature. In this paper we have adopted the interpretation that colored particles are not subject to observation just because colored states are unphysical in the sense of Eq. (2.16). It is shown that there are two phases in QCD distinguished by different choices of the gauge parameter. In one phase, called the "confinement phase", color confinement is realized and gluons turn out to be massive. In the other phase, called the "deconfinement phase", color confinement is not realized, but the gluons remain massless.Comment: 14 page

    Status of the CANGAROO-III Project

    Get PDF

    Noncommutative Quantum Field Theory: A Confrontation of Symmetries

    Full text link
    The concept of a noncommutative field is formulated based on the interplay between twisted Poincar\'e symmetry and residual symmetry of the Lorentz group. Various general dynamical results supporting this construction, such as the light-wedge causality condition and the integrability condition for Tomonaga-Schwinger equation, are presented. Based on this analysis, the claim of the identity between commutative QFT and noncommutative QFT with twisted Poincar\'e symmetry is refuted.Comment: 20 page

    No confinement without Coulomb confinement

    Full text link
    We compare the physical potential VD(R)V_D(R) of an external quark-antiquark pair in the representation DD of SU(N), to the color-Coulomb potential Vcoul(R)V_{\rm coul}(R) which is the instantaneous part of the 44-component of the gluon propagator in Coulomb gauge, D_{44}(\vx,t) = V_{\rm coul}(|\vx|) \delta(t) + (non-instantaneous). We show that if VD(R)V_D(R) is confining, limRVD(R)=+\lim_{R \to \infty}V_D(R) = + \infty, then the inequality VD(R)CDVcoul(R)V_D(R) \leq - C_D V_{\rm coul}(R) holds asymptotically at large RR, where CD>0C_D > 0 is the Casimir in the representation DD. This implies that Vcoul(R) - V_{\rm coul}(R) is also confining.Comment: 9 page

    Renormalization Constant of the Color Gauge Field as a Probe of Confinement

    Get PDF
    The mechanism of color confinement as a consequence of an unbroken non-abelian gauge symmetry and asymptotic freedom is elucidated and compared with that of other models based on an analogy with the type II superconductor. It is demonstrated that a sufficient condition for color confinement is given by Z31=0Z_3^{-1}=0 where Z3Z_3 denotes the renormalization constant of the color gauge field. It is shown that this condition is actually satisfied in quantum chromodynamics and that some of the characteristic features of other models follow from it.Comment: 34 pages, Latex, v2 - 2 appendices adde

    Significantly enhanced critical current densities in MgB2 tapes made by a scaleable, nano-carbon addition route

    Get PDF
    Nanocarbon-doped Fe-sheathed MgB2 tapes with different doping levels were prepared by the in situ powder-in-tube method. Compared to the undoped tapes, Jc for all the C-doped samples was enhanced by more than an order of magnitude in magnetic fields above 9 T. At 4.2 K, the transport Jc for the 5 at% doped tapes reached 1.85x104 A/cm2 at 10 T and 2.8x103 A/cm2 at 14 T, respectively. Moreover, the critical temperature for the doped tapes decreased slightly. Transmission electron microscopy showed a number of intra-granular dislocations and the dispersed nanoparticles embedded within MgB2 grains induced by the C doping. The mechanism for the enhancement of flux pinning is also discussed. These results indicate that powder-in-tube-processed MgB2 tape is very promising for high-field applications.Comment: 13 pages, 5 figures. to be published soo
    corecore